Optimization of the skid roads network
DOI:
https://doi.org/10.63356/gsf.2025.002Keywords:
extraction, GIS, planning, skid roadsAbstract
Optimization of the skid roads network is a critical aspect of planning forest harvesting operations, as timber transport (including extraction and long-distance road transport) represents the most expensive stage of timber production. This task entails a well-structured spatial distribution of skid roads, essential for timber extraction using tractors, skidders, forwarders, or animal assistance. A high-quality spatial distribution of skid roads enables efficient timber utilization. The primary indicator of the spatial distribution of skid roads is relative forest accessibility, with optimization efforts aimed at increasing this indicator within compartments above 90%. Achieving such optimization level relies on employing spatial and statistical analysis techniques on vector and raster data concerning terrain stand conditions, and the current state of secondary forest road infrastructure, facilitated by GIS tools. These methods allow for precise evaluation and planning enhancing both efficiency and cost-effectiveness in timber transport. The research results show a significant increase in the total length of tractor roads, from 3,311.15 m to 4,152.15 m, with a corresponding density increase from 84.55 to 106.33 m/ha based on forest compartment area of 39.16.ha. The average skidding distance ranges from 95 m to 111 m for the existing and upgraded skid road networks. The relative forest accessibility is 81% for the existing skid roads network, while for the upgraded skid roads network is around 97%. The primary goal of the research is achieved.
References
Akbarimehr, M., & Naghdi, R. (2012). Reducing erosion from forest roads and skid trails by management practices. Journal of Forest Science, 58(4), 165–169. https://doi.org/10.17221/136/2010-JFS
Backmund, V. F. (1966). Kennzahlen für den Grad der Erschließung von Forstbetrieben durch autofahrbare Wege. Forstwissenschaftliches Centralblatt, 85(11), 342–354. https://doi.org/10.1007/BF02202207
Bojanin, S. (1983). Faktori optimalne otvorenosti šuma kod sekundarnog otvaranja. Mehanizacija šumarstva, 8(11–12), 322–325.
Bunić, E. (2020). Primjena QGIS-a i GPS-a u planiranju iskorištavanja šuma (Master's thesis). University of Banja Luka.
Danilović, M., & Ljubojević, D. (2013). Otvaranje šuma sekundarnom mrežom šumskih puteva. Glasnik Šumarskog fakulteta, 108, 25–38.
Emrulović, S. (2020). Optimizacija sekundarne otvorenosti korišćenjem savremenih tehnologija (Master's thesis). University of Banja Luka.
Hentschel, S. (1996). GIS gestützte Herleitung der flächenhaften. Forsttechnische Informationen, 1996(1–2), 8–13.
IRPC – JPŠ Šume Republike Srpske. (2018). Šumskoprivredna osnova za Čemerničko šumskoprivredno područje (važnost od 2018. do 2027. godine). Banja Luka.
Jeličić, V. (1971). Mreže šumskih puteva – planiranje i određivanje gustoće. Jugoslovenski poljoprivredno šumarski centar.
Jeličić, V. (1977). Otvaranje sječina sekundarnom mrežom šumskih puteva u šumama bukve, jele i smrče. Radovi Šumarskog fakulteta u Sarajevu, 21(1–2), 65–97. https://doi.org/10.54652/rsf.1976.v24.i1-2.518
Jeličić, V. (1983). Otvaranje šuma primarnom i sekundarnom mrežom šumskih puteva. Mehanizacija šumarstva, 8(11–12), 1–19.
JPŠ Šume Republike Srpske. (2002). Pravilnik o projektovanju šumskih kamionskih puteva. Banja Luka.
Ljubojević, D., Danilović, M., Marčeta, D., & Petković, V. (2018). Winching distance in function of the optimization of skid network. South-east European Forestry, 9(2), 97–106. https://doi.org/10.15177/seefor.18-14
Lotfalian, M., Daliri, H. S., Hosseini, S. A., & Kooch, Y. (2012). Determination of most allowable slope of strip road for skidder Timberjack 450C. International Journal of Science and Nature, 3(3), 502–506.
Marčeta, D., Petković, V., & Košir, B. (2014). Comparison of two skidding methods in beech forests in mountainous conditions. Nova mehanizacija šumarstva, 35(1), 51–62.
Najafi, A., Solgi, A., & Sadeghi, S. H. (2010). Effects of skid trail slope and ground skidding on soil disturbance. Caspian Journal of Environmental Sciences, 8(1), 13–23.
Pentek, T., Pičman, D., Potočnik, I., Dvorščak, P., & Nevečerel, H. (2005). Analysis of an existing forest road network. Croatian Journal of Forest Engineering, 26(1), 39–50.
Pentek, T., Nevečerel, H., Poršinsky, T., Pičman, D., Lepoglavec, K., & Potočnik, I. (2008). Methodology for development of secondary forest traffic infrastructure cadastre. Croatian Journal of Forest Engineering, 29(1), 75–83.
Pentek, T., Nevečerel, H., Ecimović, T., Lepoglavec, K., Papa, I., & Tomašić, Ž. (2014). Strategijsko planiranje šumskih prometnica u Republici Hrvatskoj – raščlamba postojećega stanja kao podloga za buduće aktivnosti. Nova mehanizacija šumarstva, 35(1), 63–78.
Petković, V., & Potočnik, I. (2018). Planning forest road network in natural forest areas: A case study in northern Bosnia and Herzegovina. Croatian Journal of Forest Engineering, 39(1), 45–56.
Sokolović, Dž., & Bajrić, M. (2013). Otvaranje šuma. Univerzitet u Sarajevu, Šumarski fakultet.
Sokolović, Dž., Pičman, D., Lojo, A., Gurda, S., Bajrić, M., & Koljić, H. (2013). Određivanje optimalnog prostornog rasporeda mreže sekundarnih šumskih prometnica. Šumarski list, 137(1–2), 7–22.
Pravilnik o gozdnih prometnicah. (2009). Uradni list Republike Slovenije 4/2009.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vladimir Petković, Goran Ćetković, Dane Marčeta, Danijela Petrović, Matevž Mihelič, Milan Sukur

This work is licensed under a Creative Commons Attribution 4.0 International License.